Согласно новому исследованию, графеновые покрытия способны обеспечить возможность контролировать процесс испарения воды с различных поверхностей. В исследовании, проведенном командой из Китайской академии наук и Центра совместной инновационной деятельности квантовой материи в Пекине, Китай, изучалось взаимодействие молекул воды с различными поверхностями, покрытыми графеном.
«Испарение капель воды является повсеместным и сложным явлением и играет ключевую роль в природе и промышленности», – сказал ведущий автор работы Юнфэн Хуан из Китайской академии наук. «Понимание его механизма на уровне атомов и рациональное регулирование интенсивности парообразования важны для таких областей применения, как теплопередача и контроль температуры тела, но это остается задачей повышенной сложности».
Эксперименты, проведённые командой, показали, что графеновое покрытие контролирует испарение воды, подавляя скорость испарения на гидрофильных поверхностях и ускоряя испарение на гидрофобных. «Что еще более важно, мы обнаружили, что графен является «прозрачным» для испарения», – сказал Хуан. «Когда гидрофильная поверхность покрыта графеном, линия соприкосновения капель воды резко сокращается или удлиняется из-за регулировки в краевых углах смачивания поверхности, что приводит к изменениям скорости испарения».
Исследователи хотели понять «прозрачность» в испарении в графеновой среде и выявить его основопологающую структуру в атомном масштабе. Для этого они провели молекулярно-динамическое моделирование испарения капель воды на поверхностях с и без графенового покрытия. Это позволило им впервые идентифицировать механизм в атомном масштабе процессов испарения, в зависимости от подложки. Механизм, как оказалось, включал молекулу воды, образующую состояние первичной частицы на линии соприкосновения до испарения.
«Дальнейший анализ показал, что плотность воды в переходных состояниях испарения наибольшая на линии контакта, затем уменьшается экспоненциально по мере того, как она уходит от подложки», – объяснил Хуан. Десорбция воды на контактной линии доминирует в процессе испарения капель. Поскольку графен не изменяет энергию связи одной молекулы воды, он оказывает незначительное влияние на испарение на линию контакта.
Исследователи уверены, что их результаты являются важным открытием в области испарения в графеновой среде, а также указывают на новые способы рационального управления процессом испарения для практических применений в области теплопередачи, печати и смежных областях.
«Используя эксперименты, дополненные молекулярными динамическими симуляторами, д-р Хуан и его сотрудники обеспечили отличное представление молекулярных механизмов, регулирующих испарение капель воды на часто используемых в технологических процессах подложках, покрытых графеном», – высказал своё экспертное мнение Джеймс Спритлс из Уорикского университета, Великобритания, который не участвовал в исследовании. «Их исследования показывают, что способность к смачиванию несет исключительную ответственность за изменения скорости испарения, одновременно открывая несколько интересных тем для будущих исследований, таких как, например, каким образом молекулярные эффекты (прекурсорные нанопленки и тепловые флуктуации) могут быть включены в макроскопическое моделирование».